
ABC methods for
PH distributions
in insurance risk

Ausin, Galeano
and Wilson

1. Introduction

2. PH
distributions

2.1. Definition
and examples

2.2. Properties

2.3. Estimation

3. ABC methods

3.1. Introduction

3.2. ABC for PH

3.3. Examples

4. Ruin
probabilities

5. Conclusions
and extensions

6. References

ABC methods for phase-type distributions
with applications in insurance risk problems

Concepcion Ausin,
Department of Statistics,

Universidad Carlos III de Madrid

Joint work with:
Pedro Galeano, Universidad Carlos III de Madrid

Simon Wilson, Trinity College Dublin

23rd September, 2016

1 / 38



ABC methods for
PH distributions
in insurance risk

Ausin, Galeano
and Wilson

1. Introduction

2. PH
distributions

2.1. Definition
and examples

2.2. Properties

2.3. Estimation

3. ABC methods

3.1. Introduction

3.2. ABC for PH

3.3. Examples

4. Ruin
probabilities

5. Conclusions
and extensions

6. References

Introduction

• The main features of loss data sets are strong skewness,
heavy-tails, heterogeneity and the presence of extremes.

• The class of phase-type distributions (PH) is a very large and
flexible family of distributions defined on the positive real line
(Neuts, 1981).

• PH distributions are dense on [0,∞) and therefore, any positive
distribution can be theoretically well approximated by a PH
distribution.

• Basically, a positive random variable is PH if each realization can
be expressed as a sum of exponential random variables.

• Using PH distributions, it is possible to obtain ruin probabilities
in insurance risk, system failure times in reliability and waiting
times in queuing systems.
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Introduction

• Classical estimation methods for PH distributions are
traditionally based on the method of moments (Johnson and
Taaffe, 1990) and maximum likelihood estimation (Asmussen,
1996).

• However, using these approaches, it is not easy how to derive
confidence intervals for quantities of interest depending on the
estimated PH distributions such as the ruin probability in a risk
reserve process with PH claim sizes.

• This can be done in a natural way from the Bayesian perspective
using MCMC methods (Bladt et al., 2003).

• Nevertheless, classical and Bayesian methods for PH
distributions are very time consuming, mainly due to the
difficulties in the evaluation of the likelihood.
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Introduction

• Our proposal is to make use of the recently developed
Approximate Bayesian Computation (ABC) methods (Marin et
al., 2012) to make Bayesian inference on PH distribution and
further, estimate quantities of interest such as ruin probabilities.

• ABC methods provide the advantage of avoiding the evaluation
of the likelihood and are mainly based on simulation.

• Therefore, ABC methods seems to be very suitable for PH
distributions whose likelihood is difficult and computationally
expensive to evaluate but rather easy to simulate.

• We will apply our proposed ABC method to estimate credible
intervals for the ruin probability of an insurance company.
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Definition of PH distribution

A continuous PH(α,T ) distribution of order m is defined as the
distribution of the time until absorption in a finite Markov process on
the states {1, ...,m + 1} with infinitesimal generator:

Q =

[
T T0

0 0

]
,

where:

• T is a non-singular m ×m matrix with Tii < 0 and Tij ≥ 0.

• T0 = −T1.

• α is a m× 1 vector with the initial probabilities in each of the m
transient states.

• The distribution function is given by,

F (x) = 1− α exp {Tx} 1, for x ≥ 0.

.
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Examples of PH distributions

Exponential distribution, Exp(λ): This is the simplest PH distribution
with m = 1, α = 1 and T = −λ.

Erlang distribution, Er(k , λ): It is defined as the sum of k
exponentials with the same rate, λ, and then, it is a PH distribution
with m = k , α = (1, 0, . . . , 0)(1×k) and

T =


−λ λ

. . .
. . .

−λ λ
−λ


(k×k)

.
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Examples of PH distributions

Mixture of Exponential distributions, Hk(α, λ), whose density is given
by:

f (x | α, λ) =
k∑

i=1

αiλi exp(−λix), x > 0,

such that the variable is an Exp(λi ) with probability αi .

This model is also a PH distribution with m = k, α = (α1, . . . , αk)
and

T =


−λ1

−λ2

. . .

−λk


(k×k)

.
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Examples of PH distributions

Coxian distributions, Cox(k , p, λ): This is a generalization of the
Erlang by having different rates and being able to reach the absorbing
state from any phase with m = k , α = (1, 0, . . . , 0) and

T =


−λ1 λ1p1

−λ2 λ2p2

. . .
. . .

−λk−1 λk−1pk−1

−λk


(k×k)

.

Coxian distributions represent a wide subclass of PH distributions
since any acyclic PH distribution can be expressed as a Coxian
distribution.
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Some more properties

Assume a random variable X following a PH distribution,
X ∼ PH(α,T ), then:

• The density function is given by:

f (x) = α exp {Tx}T0, for x ≥ 0.

• The r -th moment is given by:

E [X r ] = (−1)r r !αT−r1.

Lack of identifiability: Unfortunately, a PH representation (m, α,T )
is not unique. For example, given an invertible matrix S such that
S1 = 1, both representations (m, α,T ) and (m, αS ,S−1TS) lead to
the same PH distribution.
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Interpretation of phases

Sometimes the number of phases, m, and the structure of the
vector-matrix (α,T ) is known. This is the case in many reliability
problems as the following.

Repairmen problem: Assume we have a system with k independent
machines that may eventually fail and be repaired. Machines
lifetimes and repair times are independent exponential variables with
rates λ and µ, respectively.

Therefore, the whole system failure time follow a PH distribution
m = k, α = (1, 0, . . . , 0) and T given by
−kλ kλ
µ − (k − 1)λ− µ (k − 1)λ

2µ − (k − 2)λ− 2µ (k − 2)λ
. . .

. . .
. . .


(k×k)

.
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Interpretation of phases

• Also, in survival analysis, there are many examples where PH
distributions with known number of phases and known
structures can be applied.

• One popular example is the compartmental kinetics model of
pharmacokinetics which consists in describing the movements of
a drug in the body.

• On the contrary, in finance and insurance risk, PH models are
usually considered for describing loss distributions and in this
case, the number of phases, m, and the structures of α and T
are unknown.
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Estimation of PH distributions
Assume that we have observed a sample of positive observations,
{x1, . . . , xn}, from a PH distribution with unknown (α,T ).

• Traditional approximation methods (mostly in engineering) are
based on the method of moments, (Johnson and Taaffe, 1990).
These are fast and easy to implement but possible solutions are
limited by the moment bounds.

• Maximum likelihood estimation methods can be developed
through the Expectation-Maximization algorithm, (Asmussen,
1996), where the observed data is augmented such that for each
transient state, i = 1, . . . ,m, we have:

• Bi : The number of observations starting in state i , .

• Zi : The total time spent in state i .

• Nij : The total number of jumps from state i to state j , for j 6= i
and for j = 1, . . . ,m + 1.

13 / 38
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Estimation of PH distributions

Thus, the likelihood of the complete data set, xc , is simplified to:

l (α,T | xc) =
m∏
i=1

αBi

i

m∏
i=1

exp (tiiZi )
m∏
i=1

m+1∏
j=1
j 6=i

t
Nij

ij

=
m∏
i=1

αBi

i

m∏
i=1

t
Ni,m+1

i,m+1 exp (−ti,m+1Zi )
m∏
j=1
j 6=i

t
Nij

ij exp (−tijZi )

where ti,m+1 is the i-th element of the exit vector, T 0.

Given the complete data, the MLE of the PH parameters can be
obtained:

α̂i =
Bi

n
; t̂i,m+1 =

Ni,m+1

Zi
; t̂ij =

Nij

Zi
; t̂ii = −

(
t̂i,m+1 +

m∑
j=1;j 6=i

t̂ij

)
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Estimation of PH distributions

• The EM algorithm alternates these steps:

• E-step: Computes the expectation of the missing quantities:
Bi ,Zi ,Nij , for i = 1, . . . ,m, and for j = 1, . . . ,m + 1 with j 6= i .

• M-step: Given the expected missing quantities, the MLE of
(α,T ) are directly obtained.

• The E-step is computationally heavy since these expectations
depend on exponential matrices.

• Alternatively, Bladt et al. (2001) develop a Bayesian algorithm
to make inference on (α,T ).

• They propose a Gibbs sampling method based on the same data
augmentation strategy considered in the EM algorithm.
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Estimation of PH distributions

Bladt et al. (2001) assume the following semi-conjugate priors:

(α1, . . . , αm) ∼ Dirichlet (φ1, . . . , φm)

ti,m+1 ∼ Gamma (νi,m+1, ζi ) , for i = 1, . . . ,m.

tij ∼ Gamma (νij , ζi ) , for i = 1, . . . ,m; j 6= i .
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Estimation of PH distributions

Given a sample of observed data, {x1, . . . , xn}, the following Gibbs
sampling algorithm is developed:

Set some initial values for (α,T ).

1 Generate a complete sample {y1, . . . , yn} where each yi is a
realization of a continuous time Markov process which get
absorbed at time xi .

2 Given the complete data, obtain the missing quantities:
Bi ,Zi ,Nij , for i = 1, . . . ,m, and for j = 1, . . . ,m + 1 with j 6= i .

3 Generate a sample from the conditional posterior:

(α1, . . . , αm) ∼ Dirichlet (φ1 + B1, . . . , φm + Bm)

ti,m+1 ∼ Gamma (νi,m+1 + Ni,m+1, ζi + Zi ) , for i = 1, . . . ,m.

tij ∼ Gamma (νij + Ni,j , ζi ) + Zi , for i = 1, . . . ,m; j 6= i .
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Estimation of PH distributions

• The main difficult part is step 1 since a Metropolis-Hastings
method is used to simulate the missing sample with the exact
observed absorbtion times.

• To do that, proposal underlying processes are simulated such
that the absorption times are larger than those observed in the
sample. This is done by rejection sampling.

• Frequently, this algorithm produces low acceptance rates which
implies a bad mixing of the MCMC chain.

• Therefore, it seems reasonable to study the performance of ABC
methods to make Bayesian inference for general PH models.
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ABC methods

• ABC methods, (Marin et al., 2012), replace the calculation of
the likelihood function with a simulation of the model that
produces an artificial data set.

• The simulated data is then compared with the observed data
using some kind of distance to approximate the posterior
distribution of the model parameters.

• The idea is similar to approximation methods based on
simulation which is standard in computer models.

• ABC methods are becoming popular in genetics, epidemiology
and in population biology, where likelihood functions can usually
not be calculated explicitly but stochastic simulation is
straightforward.
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ABC methods for discrete data

Assume that we have observed a data sample x = {x1, . . . , xn} from
a discrete variable, X | θ ∼ f (x | θ) and consider a prior, f (θ).

Suppose that the likelihood, f (x | θ), is unknown (or difficult to
evaluate) but it is easy to sample from X | θ.

We may obtain a sample from the posterior distribution f (θ | x) with:

Repeat:

1 Simulate a value θ∗ from the prior, f (θ).

2 Simulate an iid sample x∗ = {x∗1 , . . . , x∗n } from X | θ∗.

The pairs (θ∗, x∗) are values from the joint distribution f (θ,X).

Now, we reject those sampled pairs such that x∗ 6= x. Then, the
values of θ∗ that remain come from the posterior distribution f (θ | x).

20 / 38



ABC methods for
PH distributions
in insurance risk

Ausin, Galeano
and Wilson

1. Introduction

2. PH
distributions

2.1. Definition
and examples

2.2. Properties

2.3. Estimation

3. ABC methods

3.1. Introduction

3.2. ABC for PH

3.3. Examples

4. Ruin
probabilities

5. Conclusions
and extensions

6. References

ABC methods for discrete data

A problem with the previous approach is that if the sample size is
large, it may take a very large number of iterations to generate
artificial samples such that x∗ = x

If there is a sufficient statistic, s(x), for θ, we know that
f (θ | x) = f (θ | s(x)).

Therefore, we can use the same idea as previously, but accepting
samples x∗ such that s(x∗)− s(x).
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ABC methods for continuous data

When X is continuous, for any θ, the time taken to generate x∗ = x
(or s(x∗) = s(x)) will be infinite.

In this case, we may accept samples not too far away from x.

Defining a distance measure, ‖ · ‖ and a tolerance, ε, we accept
samples such that ‖x∗ − x‖ < ε (or ‖s(x∗) = s(x)‖ < ε).

In practice, the value of ε is not fixed, but instead it is accepted just
a certain proportion of the sampled values (e.g. 5%, 1%, 0.5%) with
the smallest differences from the real data.
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Trivial example

Exponential data: Suppose we have a sample x = {x1, . . . , xn} from
an exponential r.v., X ∼ Exp(λ).

Assume a conjugate prior λ ∼ Gamma(a, b) such that the true
posterior is known: λ | x ∼ Gamma(a + n, b + nx̄).

For this case, a sufficient statistic for λ is s(x) = x̄ . Then, we may
construct the following ABC algorithm by repeating:

1 Simulate a value λ∗ ∼ Gamma(a, b) .

2 Simulate an iid sample x∗i ∼ Exp(λ∗), for i = 1, . . . , n.

3 Compute the mean of the simulated sample, x̄∗.

4 Reject if |x̄∗ − x̄ | > ε.
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Trivial example

We generate n = 100 observations from an Exp(λ = −3).

We implement the previous ABC method for 10000 iterations using a
non informative prior, λ ∼ Gamma(0.01, 0.01).

The figure shows a histogram of the approximated posterior sample
using the 1% of the simulated samples with smallest mean differences
in abs. The solid line shows the true posterior density.

Histogram of lambda.post.ABC
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Trivial example

Clearly, we may obtain an approximated sample of the predictive
density, f (xn+1 | x), by just including in the ABC algorithm the step:

• Sample x∗n+1 ∼ Exp (λ∗)

The figures show a histogram and the empirical cdf of the
approximated predictive sample together with the true exponential
pdf and cdf, resp.
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ABC for PH distributions

Unfortunately, for any other PH distribution different from the single
exponential, sufficient statistics are not available.

Then, we propose the use of the first m sample moments:

rk =
1

n

n∑
i=1

xki , for k = 1, . . . ,m,

which we hope are close to be sufficient.

Theoretically, as ε→∞, we are then approximating f (α,T | r),
where r = (r1, . . . , rm), instead of f (α,T | x).
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ABC for PH distributions

Given a data sample x from a general PH(α,T ) distribution, we
propose the following ABC algorithm to approximate f (α,T | x).

Repeat:

1 Simulate a value (α∗,T ∗) from the prior:

(α∗1 , . . . , α
∗
m) ∼ Dirichlet (φ1, . . . , φm)

t∗i,m+1 ∼ Gamma (νi,m+1, ζi ) , for i = 1, . . . ,m.

t∗ij ∼ Gamma (νij , ζi ) , for i = 1, . . . ,m; j 6= i .

Reject and repeat if | det(T ∗)| < ε

2 Simulate an iid sample x∗i ∼ PH(α∗,T ∗), for i = 1, . . . , n.

3 Compute the sample moments of the simulated sample:

r∗k =
1

n

n∑
i=1

(x∗i )k , for k = 1, . . . ,m,
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ABC for PH distributions

Once we have the simulated samples, we propose to accept e.g. the
1% of them with the smallest Mahalabobis distance:

dM(log r∗, log r) =

√
(log r∗ − log r)TS−1

r (log r∗ − log r)

where:

• log r∗ are the log moments of each simulated sample.

• log r are the log moments of the observed sample.

• Sr is the sample covariance matrix of the moments, log r∗ using
the whole set of simulations.

As usual, we may then obtain a predictive sample by sampling for
each accepted pair (α∗,T ∗):

• Sample x∗n+1 ∼ PH (α∗,T ∗)
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Example of a general PH
distribution

We generate n = 100 observations from a PH distribution with
m = 4 phases, α = (1, 0, 0, 0) and

T =


−1.29 0.1 0.67 0.29
0.88 −5.84 2.71 2.11
0.42 0.54 −2.86 0.05
2.97 0.12 1.09 −4.73


We implement the proposed ABC method for 10000 iterations using
a non informative prior:

(α∗1 , . . . , α
∗
m) ∼ Dirichlet (1, . . . , 1)

t∗i,m+1 ∼ Gamma (0.01, 0.01) , for i = 1, . . . ,m.

t∗ij ∼ Gamma (0.01, 0.01) , for i = 1, . . . ,m; j 6= i .
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Example of a general PH
distribution

The figures show a histogram and the empirical cdf of the
approximated predictive sample together with the true exponential
pdf and cdf, resp.
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Ruin probabilities

Assume a risk reserve process, Rt , defined by:

Rt = u + ct −
N(t)∑
i=1

Xi ,

where:

• u is the initial capital of the insurance company.

• c is the premium income per unit time.

• N(t) is number of claims arrived up to time t.

• X1,X2, . . . are iid claim sizes independent from N(t).

Further, we assume that:

• N(t) follows a Poisson process of rate λ.

• Claim sizes are iid following a PH(α,T ) distribution
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Ruin probabilities

Given the equilibrium condition,

−λαT−11 < c

the limit probability of ruin of the company is given by:

Pr

(
inf
t>0

Rt < 0 | R0 = u

)
= α+ exp

{
(T + T0α+)u

}
1

where α+ = −λαT−1.

Otherwise, the limit ruin probability is one.

Note that the problem of estimating the ruin probability for this
model is equivalent to estimating the stationary waiting time in a
M/PH/1 queueing system with Poisson arrival rate λ and PH(α,T )
distributed service times.
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Ruin probabilities

Assume now that we have a sample, t = {t1, . . . , tn}, of interarrival
claim times from a Poisson process of rate λ.

And we also have the corresponding sample of claim sizes,
x = {x1, . . . , xn}, that we assume to be generated from a PH(α,T ).

We may assume the standard conjugate prior, λ ∼ Gamma(a, b) such
that the posterior is,

λ | t ∼ Gamma(a + n, b +
n∑

i=1

ti ).

Therefore, given a sample from λ | t and a sample from (α,T ) | x
obtained from the ABC algorithm, we can obtain a sample of ruin
probabilities that can be used to approximate credible intervals for
the ruin probabilities.
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Example

Assume we have a sample of n = 100 claim sizes simulated in the
previous example from a PH distribution with m = 4 phases,
α = (1, 0, 0, 0) and

T =


−1.29 0.1 0.67 0.29
0.88 −5.84 2.71 2.11
0.42 0.54 −2.86 0.05
2.97 0.12 1.09 −4.73


Also, we simulate n = 100 interarrival times from an exponential
distribution with, λ = 0.5.

Given the simulated data, a premium income, c = 1 and initial
capital u = 10, we want to estimate the posterior distribution for the
limit ruin probability.
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Example for ruin probabilities

For the true parameters, the equilibrium condition holds:
−λαT−11 = 0.8407 < 1 and the true ruin probability is 0.2884.

The figure shows the posterior sample from ruin probabilities:

Limit ruin probs

De
ns

ity
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6

A 95% credible interval is [0, 0.7213].
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Extensions

• Up to now, we have assumed that the number of phases, m, is
known. However, we could impose a prior distribution on m and
use ABC to sample from the joint posterior of (m, α,T ).

• We have observed that problems may appear when there are
many zeros in the intensity matrix, T . One possibility could be
to impose positive prior mass on zero values for the off diagonal
elements of T .

• Another alternative could be to consider canonical
representations of PH distributions.

• As mentioned, the Coxian family represents the whole set of
acyclic PH distributions.

• There is also a canonical representation for the whole set of PH
distributions called monocyclic representation. However, the
order of this PH representation is often larger than that of the
original representation.
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Extensions

• The efficiency of the proposed approach could be also improved
by considering the ABC-MCMC approach.

For s = 1 to S :

1 Simulate a value
(
α(s),T (s)

)
∼ q

(
α,T | α(s−1),T (s−1)

)
.

Reject and repeat if | det(T (s))| < ε

2 Simulate an iid sample x
(s)
i ∼ PH(α(s),T (s)), for i = 1, . . . , n.

3 Compute the sample moments, r
(s)
k , of x(s), for k = 1, . . . ,m.

4 If dM(log r(s), log r) < ε, accept
(
α(s),T (s)

)
with probability:

min

{
1,

π(α(s),T (s))q
(
α(s−1),T (s−1) | α(s),T (s)

)
π(α(s−1),T (s−1))q

(
α(s),T (s) | α(s−1),T (s−1)

)}
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